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Abstract

After the celebrated Black-Scholes formula for pricing options under con-
stant volatility, the need for more complicated nonconstant volatility models in
financial mathematics has been the motivation of numerous works during the
nineties. In particular, a lot of attention has been paid to stochastic volatil-
ity models where the volatility is randomly fluctuating driven by an additional
Brownian motion. We have shown in [1, 2] that, in presence of separation of
time scales, between the main observed process and the volatility driving pro-
cess, asymptotic methods are very efficient in capturing the effects of random
volatility in simple universal corrections to constant volatility formula. From
the point of view of partial differential equations this method corresponds to
a singular perturbation analysis. The aim of this paper is to deal with the
nonsmoothness of the payoff function inherent to option pricing such as in the
case of typical call options. We establish the accuracy of the corrected Black-
Scholes price by using an approriate payoff regularization which is removed
simultaneously as the asymptotics is performed.

1 Introduction

Stochastic volatility models in financial mathematics can be thought as a Brownian-
type particle (the stock price) moving in an environment where the diffusion coefficient
is randomly fluctuating in time according to some ergodic (mean-reverting) diffusion
process. In the context of Physics there is no natural correlation between these two
diffusion processes since they do not “live” in the same space: the second appears
as a random coefficient in a diffusion equation which describes the evolution of the
probability distribution of the first one. In the context of Finance these two pro-
cesses, stock price and volatility, jointly define the dynamics of the stock price under
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its physical probability measure or an equivalent risk-neutral martingale measure.
Correlation between them is perfectly natural and in fact much needed to account
for the so-called leverage effect. The diffusion equation appears as a contingent claim
pricing equation, its terminal condition being the payoff of the claim. We refer to [4]
or [5] for surveys on stochastic volatility. When volatility is fast mean-reverting, on
a time-scale smaller than typical maturities, one can perform an asymptotic singular
perturbation analysis of the pricing PDE. As we have shown in [1], this expansion
reveals a first correction proportional to the correlation coefficient between the two
Brownian motions involved. We refer to [1] for a detailed account of evidence of fast
scale in volatility and the use of this asymptotics to parametrize the evolution of
the skew or the implied volatility surface. We also refer to [3] for a different type of
application, namely variance reduction in Monte Carlo methods.

The present paper deals with the accuracy of such an expansion in presence of
another essential characteristic feature in option pricing, namely the nonsmoothness
of payoff functions such as in the case of put or call options. In [1] we have shown
that the leading order term in this expansion corresponds to a Black-Scholes price
computed under a constant effective volatility. The first correction involves derivatives
of this constant volatility price. When the payoff is smooth we have shown that the
corrected price, leading order term plus first correction, has the expected accuracy,
namely the remainder of the expansion is of the next order. The nonsmoothness of
the payoff, such as for a call option, creates a singularity at the maturity time near
the stike price of the option. This paper is devoted to the proof of the accuracy of
the approximation in that case. It is important because this is a natural situation in
financial mathematics one has to deal with. The proof given here relies on a payoff
smoothing argument which can certainly be useful in other contexts.

In Section 2 we introduce the class of stochastic volatility models which we con-
sider. They are written directly under the pricing equivalent martingale measure and
with a small parameter representing the short time-scale of volatility. We recall how
option prices are given as expected values of discounted payoffs or as solutions of
pricing backward parabolic PDE’s with terminal conditions at maturity times. In
Section 3 we recall the formal asymptotic expansion presented in [1]. In Section 4 we
introduce the regularization of the payoff and decompose the main result, accuracy of
the price approximation, into three lemmas. Section 5 is devoted to the proof of these
lemmas. Detailed computations involving derivatives of Black-Scholes prices up to or-
der seven are given in Appendix where we also recall the properties of the solutions of
Poisson equations associated to the infinitesimal generator of the Ornstein-Uhlenbeck
process driving the volatility.

2 Class of Models and Pricing Equations

The family of Ornstein-Uhlenbeck driven stochastic volatility models (S§,Y}®) that
we consider can be written, under a risk-neutral probability /P*, in terms of the small



parameter €
dSs = rSidt+ f(YF)SidWy,

1
dYF = |-(m-YF) - ”\—fA(YE) dt + ”\—[dzg,

) g Ve
motions (W}, Z;) have instantaneous correlation p € (—1,1):
d(W*, 2%, = IE*{dW} dZ})} = p dt,

and

Aly) = % VI,

is a combined market price of risk. The price of the underlying stock is S; and the
volatility is a function f of the process Y5. At the leading order 1/¢, that is omitting
the A-term, Y} is an Ornstein-Uhlenbeck (OU) process which is fast mean-reverting
with a normal invariant distribution N (m, v/?).

In this fast mean-reverting stochastic volatility scenario, the volatility level fluc-
tuates randomly around its mean level, and the epochs of high/low volatility are
relatively short. This is the regime that we consider and under which we analyze
the price of European derivatives. A derivative is defined by its nonnegative payoff
function H(S) and its maturity time 7. The payoff function must in general satisfy
the integrability condition

E*{H(Sr)*} < o0,

with IE* denoting expectation with respect to IP*. Moreover, we assume:

1. T he volatility is positive and bounded: there are constants m; and msy such
that
0<mi < fly)y <ma<oo  VyeR.

2. The volatility risk-premium is bounded:
v(y) <l<oo  VyeR.

for some constant [.

It is convenient at this stage to make the change of variable
Xy =logS;, >0,

and write the problem in terms of the processes (X;,Y;?) which satisfy, by It6’s
formula the stochastic differential equations

ixX; = ( - %f(YW) dt + f(Y7) AWy, (2.1)

dy; = F(m—yf) W2 v | ar 4 de* (2.2)

(= Ve
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We also define the payoff function A in terms of the log stock price via
H(e®) = h(x), z €R.

The price at time ¢ < T' of this derivative is a function of the present value of the
stock price, or equivalently the log stock price, X; = = and the present value Y;" =y
of the process driving the volatility. We denote this price by P¢(¢,z,y). Under the
risk-neutral probability measure IP*, it is given by:

Pi(tyz,y) = B {e T OR(XE) | X] = 2,Yf =y} .
We shall also write these conditional expectations more compactly as
Pe(t,z,y) = E™ 14y {e_’"(T_t)h(Xfp)} i

Under the assumptions on the models considered and the payoff, P¢(t, z,y) is the
unique classical solution to the associated backward Feynman-Kac partial differential
equation problem

1 1
(g[,() + %El + EQ) P = 07 (23)
P(T,z,y) = h(z)

int<T, xz,y € R, where we have defined the operators

0? 0
Ly = V26—y2+(m_y)8_y’ (2.4)
2
£ = VI f() g~ VA (2.5
0 1 0? 1 0
Ly, = o + Ef(y)Z@ + (T — §f(y)2) Erimkl (2.6)

The operator L is the infinitesimal generator of the OU process
dY, = (m—=Y,)dt +vV2dZF, (2.7)

L5 is the Black-Scholes operator in the log variable and with volatility f(y), and £,
contains the mixed partial derivative due to the correlation and the derivative due to
the market price of risk.

3 Price approximation

We present here the formal asymptotic expansion computed as in [1, 2] which leads
to a (first-order in &) approximation P¢(t,z,y) &~ Q°(t,z). In the next section we
prove the convergence and accuracy as € | 0 of this approximation which consists of
the first two terms of the asymptotic price expansion:

Qs(ta .T) = PO(ta 37) + \/EPI(t, CC),
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which do not depend on y and are derived as follows. We start by writing
P* = QF4eQe+e Qs+ =Py +VeP +eQu+eQs 4+, (3.1)

Substituting (3.1) into (2.3) leads to

1 1
gLOPO + NG (LoPy + L1 Py) (3.2)

+ (LoPy+ L1P1 + LoPy) + Ve (LoQs + L1Po + LoPy) + -+ = 0.

We shall next obtain expressions for Py and P; by successively equating the four
leading order terms in (3.2) to zero. We let (-) denote the averaging with respect to
the invariant distribution N (m, v?) of the OU process Y

1

vV 2T

(9) =

/ g(y)e MUy, (3.3)
R
Below, we will need to solve the Poisson equation associated with Ly:

Lox+9g=0, (3.4)

which requires the solvability condition

{9) =0, (3.5)

in order to admit solutions with reasonable growth at infinity. Properties of this
equation and its solutions are recalled in the Appendix C.
Consider first the leading order term:

E()P() = 0.

Since L, takes y-derivatives, we seek solutions which are independent of y: Py, =
Py(t,z) with the terminal condition P(T,z) = h(z).
Consider next:

£0P1+£1P0:0.

Since L£; contains only terms with derivatives in y it reduces to Lo, = 0 and we
seek again a function P; = P;(t,x), independent of y, with a zero terminal condition
Pi(T,z) = 0. Hence, Q° = Py + /eP;, the leading order approximation, does not
depend on the current value of the volatility level.

The next equation

LoQs + L1P+ L3Py =0
reduces to the Poisson equation L@ + L3Py = 0, and its solvability condition

(L2Py) = (L) Py = 0, (3.6)
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is the Black-Scholes PDE with constant square volatility { f2) and payoff h. We choose
Py(t,z) to be the classical Black-Scholes price, solution of (3.6) with the terminal
condition P(T,x) = h(z).

Observe that Qy = —L;"' (L5 — (£2)) P, and consider finally:

LoQs + L1Q2 + L2P = 0. (3.7)
It is a Poisson equation in Pjs, and its solvability condition gives
(Lo)Pr = —(L£1Qs) = (L1£5" (L2 — (L2))) Py,

which, with its zero terminal condition, determines P; as a solution of a Black-Scholes
equation with constant square volatility (f?) and a source. Using the expressions for
L; one can rewrite the source as:

(LrL51 (Lo = (L2)) = (Ll (F ()" = (7)) % (% - %) P
93 0? 0
= (v?,@ + (vg — 31)3)@ + (2v3 — U2)a—x> Py, (3.8)
where
vy = ﬁ(2p<f¢ ) —(Ao))
vs = (1), (3.9)

V2
and ¢ is a solution of the Poisson equation:
Lod(y) = f(y)* = (f?). (3.10)

We can therefore conclude:

1. The first term P, is chosen to be the solution of the “homogenized” PDE prob-

lem
<['2>P0 = 07
P()(t,ﬂ?) = h(.’L‘),
with 9 1., 1.\ 0
_ =2 - _=x2) ..
<£2>_8t+208x2+<r 20)833 ™
and where
a® = (f?.

In other words, P, is simply the Black-Scholes price of the derivative computed
with the effective volatility &.



2. The second term, or correction to the Black-Scholes price, is chosen to be given
explicitly, as a linear combination of the first three derivatives of Py, by

3 2

0 0
F -3 2y - V;)—) P, (311)

.0

da3
with
Vs = Veus, (3.12)

since it is easily seen, by using (L2)Py = 0, that equation (3.8) is satisfied, and
that, on the other hand, the terminal condition P; (7, z) = 0 is clearly satisfied.

Essential instruments in financial markets are put and call options for which the
payoff function H(S) is piecewise linear. We shall focus on call options:

HS)=(S-K)" = hlz)=("-K),

for some given strike price K > 0. Notice that A is only C° smooth with a discon-
tinuous first derivative at the kink x = log K, (at the money in financial terms).
Nonetheless, at t < T, the Black-Scholes pricing function Py(¢,x) is smooth and
Pi(t,z) is well-defined, but second and higher derivatives of P, with respect to z
blow up as ¢t — T (at the money).

Our main result on the accuracy of the approximation Q¢ = Py + /¢ P; is as
follows:

Theorem 1 Under the assumptions (1) and (2) above, at a fized pointt < T, x,y €

R,
lim |P (tax:y)l_ Q (ta $)|
€l0 gt—p

=0,

for any p > 0.

4 Accuracy of the price approximation

In order to prove Theorem 1 we introduce in the next section the regularized price,
P the price with a slightly smoothed payoff with & being the (small) smoothing
parameter. We denote the associated price approximation Q°°. The proof then
involves showing that (i) P® ~ P=9, (ii) P*° ~ Q, (iii) Q*° ~ @Q¢, and controlling
the accuracy in these approximations by choosing § appropriately.

4.1 Regularization

We begin by regularizing the payoff, which is a call option, by replacing it with the
Black-Scholes price of a call with volatility ¢ and time to maturity 6. We define

R (x) := Cps(T — 6,2, K, T;5),

7



where Cpg(t, z; K,T;5) denotes the Black-Scholes call option price as a function of
current time ¢, log stock price z, strike price K, expiration date 7" and volatility &.
It is given by

2

Cps(t,z; K,T;5) = Py(t,z;K,T;5) = e*N(dy) — Ke "™ N(dy) (4.1
1 [® .
N(z) = —— e ¥/ q
@ = o= Py

—log K
d1 = &4‘[)’7'
T
d2 = d1—7',
where we define .
r
=ovT —1t b= — 4+ —.
T=0 62+2

For § > 0, this new payoff is C*. The price P*°(¢,z,y) of the option with the
regularized payoff solves

LEP = 0
P(T,z,y) = B (x).
4.2 Main convergence result

Let Q*9(t,z) denote the first-order approximation to the regularized option price:

P~ Q% = P04+ /e P},

where
Pg(t,x) = CBS(t—(S,x;K,T;ﬁ) (42)
1) 583 5 € 82 € £ 0 1)
VeP! = —(T —t) 1/3%+(V2 —3‘/},)@+(2V§; _V2)8—x Py. (4.3)

We establish the following pathway to proving Theorem 1 where constants may de-
pend on (¢, T, z,y) but not on (g,9):

Lemma 1 Fiz the point (t,x,y) where t < T. There erists constants d; > 0, & > 0
and ¢; > 0 such that
|P5(t,$, y) - PE’J(taxa y)| <c1d

for all0 <6 <6 and 0 < € < &.

This establishes that the solutions to the regularized and unregularized problems are
close.

Lemma 2 Fiz the point (t,x,y) where t < T. There exists constants 0y > 0, &, > 0
and ¢y > 0 such that

Q°(t,2) = Q°(t,2)| < 20
for all0 <6 < 8y and 0 < € < &,.



This establishes that the first-order asymptotic approximations to the regularized and
unregularized problems are close.

Lemma 3 Fiz the point (t,,y) where t < T. There exist constants 63 > 0, &3 > 0
and c3 > 0 such that

P4(,0) ~ @) < o (<l1omsl 5 52,

for all0 <6 < d3 and 0 < € < &3.

This establishes that for fixed ¢, the approximation to the regularized problem con-
verges to the regularized price as € | 0.

The convergence result follows from these lemmas:

Proof of Theorem 1. Take § = min(d;, &2, d3) and &€ = min(éy, &2, €3). Then using
lemmas 1, 2 and 3, we obtain

‘PE_QE‘ < |P5_P5,5 +|PE’J_Q€’6|+‘Q€_Q5’J

< 2max(cr,c2)d + c3 <a|log5| +8\/§+8) :

for 0 < § < § and 0 < € < &, where the functions are evaluated at the fixed (¢, x,%).
Taking 0 = ¢, we have

|P* — Q| < cs(e +¢|logel),
for some fixed c5 > 0. It follows that

pe e
P(ay) - Q(t)
€l0 gl-p

=0,

for any p > 0.

5 Proof of lemmas

5.1 Proof of Lemma 1

We use the probabilistic representation of the price given as the expected discounted
payoff with respect to the risk-neutral pricing equivalent martingale measure IP*.

Ptz y) = E* 4, {e "TIR(XE)},

and define the new process (X¢) by
. 1= . . .
ax; = (r i Y)) dt + F(,Y7) (VI— 2 dW; +pdZ;).,
where (W) is a Brownian motion independent of (Z}), (Y;) is still a solution of (2.2)

and fly) fort<T
3 _ Yy orit <
f(t,y)—{ o fort > T.



Then we can write
PE,J(ta x, y) = E*t,ac,y {e_T(T_t—i—J)h(X%—I—&)} )

and 5
PA(t,2,) = By {0 OR(X5) }

Next we use the iterated expectations formula
POt 2,y) =P (2,y) = By { " {e" T OR(K5,5) = T OR(KG) | (Z)icocr | |

to obtain a representation of this price difference in terms of the Black-Scholes function
Py which is smooth away from the terminal date 7. In the uncorrelated case it
corresponds to the Hull-White formula [6]. In the correlated case, as considered here,
this formula is in [7], and can be found in [1](2.8.3). Conditioned on the path of the
second Brownian motion, it is simple to compute explicitly

X5 | (Z5)i<osr ~ N (mS,v7),
where the mean and variance are given by
m; = z+&7r+ (r— %52)(T—t)
vi = 55T —1t)
and we define

T T
&G = ,o/t f(t,Y:)d?:—%pQ/t f(t,Y;)st (5.1)

~ 1_,02 /T 5
52 = F(t,Y5)ds.

It follows from the calculation that leads to the Black-Scholes formula that
Ee" " InX5) | (Zhicser} = Polt, X§ + & K, T3 5,).
Similarly, we compute
Xiis | (ZD)icsr ~ N (ms5, v5),

where the mean and variance are given by

1.
my; = z+&r+rd+ (r— 50275)(T — 1)

/U; == &2’5(7—’ - t),

and we define




Therefore
E e T HOR(X515) | (Z)ics<r} = Po(t, X; + & + 16, K, T3 5,),
and we can write
POty ,y) =Pt 2,y) = B 0y {Polt, & + &0 + 10, K, T35,5) — Po(t,x + &3 K, T55,)}

Using the explicit representation (4.1) and that &, is bounded above and below as
f(y) is, we find

|P0(ta T+ gt,T + Té; Ka T7 6,0,5) - PO(t: T+ gt,T; K7 T7 6-,0)| S 5cl(e§t’T Hgt,T‘ + ]-] + 1)

for some ¢; and for § small enough. Using the definition (5.1) of & 7 and the existence
of its exponential moments, we thus find that

|P6(t’xay) - PE’J(taxayN < c0

for some c; and for ¢ small enough.

5.2 Proof of Lemma 2

From the definition (3.11) of the correction /¢P; and the corresponding definition
(4.3) of the correction 1/P} we deduce

QE,J_QE
563 5 € 62 € € a 3
= [1-(T-1) ‘G%JF(‘G—?"G)@*'(?‘G—‘G)G—@“ (P — R).

From the definition (3.9) of the v;’s, the definition (3.12) of the V;’s and the bounds
on the solution of the Poisson equation (3.10) given in Appendix C, it follows that

max(|V; |, [V5]) < eiv/e
for some constant ¢; > 0. Notice that we can write
P.(t,x) = Py(t — 0, ).

Using the explicit formula (4.1), it is easily seen that P, and its successive derivatives
with respect to x are differentiable in ¢ at any ¢t < T'. Therefore we conclude that for
(t,z,y) fixed with ¢ < T

Q@ (t,7) — Q°(t,2)| < 26

for some c; > 0 and § small enough.
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5.3 Proof of Lemma 3

We first introduce some additional notation. Define the error Z%? in the approxima-
tion for the regularized problem by

P = P{ +\/eP} + Q) + £*%Q% — 7%,
for Q5 and Q3 stated below in (5.3) and (5.4). It follows that
L7 = L°(P)+VeP] +eQ) +7Q5 — P) (5.2)

1 1

= gﬁoPg + %([,Opf + L P))
H(LoQs + L1P] + L2Pg) + v/ (LoQ5 + L1Q5 + L2PY)
+e (£1Q5 + £2Q) + VELQS)

= & (L1Q5 + L2Q5) + £7L,Q5 = G

because P solves the original equation £5P*° = 0 and we choose P¢, P}, Q) and
Q5 to cancel the first four terms. In particular, we choose

2P6 P(S
Oor _9 °> (5.3)

1
) _ 1 oIy 0Oy
QQ(t’x’y) - 2¢(y) < axg 8CC
so that
LoQ) = —Ly Py,

(with an “integration constant” arbitrarily set to zero) whereas Qg is a solution of
the Poisson equation

EoQg = —(£1Q) + Lo PY), (5.4)

where the centering condition is insured by our choice of P!.
At the terminal time T we have

ZT,z,y) = ¢ (Q3(T, z,y) + VeQi(T, z,y)) = H(z,y),

where we have used the terminal conditions P**(T,z,y) = P¢(T,z,y) = h’(x) and
P}(T,z,y) = 0. This assumes smooth derivatives of P{ in the domain ¢t < T which
is the case because h? is smooth. It is shown in Appendix A that the source term
G*°(t,x,y) on the right-side of equation (5.2) can be written in the form

(Bt

5 7 .
o 0
¥/ (Z 97 4) 5P + (T = 1) ng‘) ()5 Pg) . (653)

12



In Appendix A we also show that the terminal condition H®(x,y) in (5.5) can be
written

2

H(z,y) = g(ZhP(y);—;P( >+e3/2 (Zh

=1

5 (7, x)) (5.6)

To bound the contributions from the source term and terminal conditions we need the
following two lemmas that are derived in Appendix C and Appendix B respectively:

Lemma 4 Let y = ggj) or x = h,gj) with the functions ggj) and hgj) being defined in
(5.5) and (5.6) then there exists a constant ¢ > 0 (which may depend on y) such that
FE*{|x(YO)|Yf =y} <c<oofort<s<T.

Lemma 5 Assume T —t > A > 0 and E*{|x(Y;)|Yy =y} < ¢1 < oo for some
constant ¢, then there exists constants co > 0 and 6 > 0 such that for 6 < 5 and
t<s<T

. £ az € min -n
E*, ., {;X(Y; )%Pg(s,Xs)} | < [T+0— 4] 0,1-n/2] (5.7)

T n az
* —r(s—t € 1) €
0 { JACEDD MR CATET TS ds}\ 69

=1

¢ |log(d)| forn =4+ 2p
¢ Smin[0.p+(4-n)/2]  clge

IN

Proof of Lemma 3
We use the probabilistic representation of equation (5.2), L5750 = G*° with
terminal condition H®:

T
29(t,5.4) = Busy { TR ,Y9) - [ 00650, 35, s
t

From Lemma 5 it follows that there exists a constant ¢ > 0 such that

T
|E* 5.y {/ -DGed(XE, YE)ds } | < ¢ {e + ellog(d)| + e\/s/(S} (5.9)
t
By {H(X5,Y5)}| < c{e+eEfo}, (5.10)
and therefore also for (¢, z,y) fixed with ¢t < T

P Q) = Q)+ Q4 -

< c{6+6|10g(5)| +e\/%}. (5.11)

since Q) and Q3 evaluated for ¢ < T can also be bounded using (5.3) and (A.5).

13



A Expressions for Source Term and Terminal Con-

dition
From (5.2), the source term in the equation for the error Z%9 is

G = ¢ (L.Q5+ L2Q3) + ¥ L,Q8.

(A.1)

To obtain an explicit form for this source term, we consider the three terms separately.

We first introduce the convenient notation:

)
D =
_® 0

D2:@_8_x.

Consider the term £,Q3 in (A.1). Using that

L = La(fW) = Lu(6) + 5 (7w)* — %) Dy

Ly(3)DPy = 0,
and (5.3), one deduces:

1

L2Q5 = ~1 (f(y)* — 0?) ¢(y) DD ;.

Consider next the term £;Q3 in (A.1). We have using (3.7)

Q) = —Lo' (L1Q%+ LaP) — (£:Q5 + Ly PY)),
= —L5' (£1Q% — (L1Q0) + (Lo — (L2)) P,

(A.2)

(A.3)

(again with an “integration constant” arbitrarily set to zero). It follows from (5.3)

that:
0? 0 1
£t = (Vanr) s - Vanw e ) (~3e0mir)
- —%vpf(y)qﬁ’(y)DDzPés + %m(ywy)wé-
Now let

Lo = f(y)¢’(y) - <f¢l>,
Loz = Ay)¢'(y) — (Ad),

then we find using (3.10) and (A.2) that Q3 can be written:

5 _ vp sV § 1 8
@ = (L2nDD ~ Sn)Dars) - 3 (G0)ParY),

14
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Substituting for £; and expanding gives

£,:Q5 = VoA f ()Y, (y)DDDP — v pf (y)vh(y) DDy P?
~2pA(y) ¢ (y) DDy Fy + v*A(y) v (y) Do P
—% (0f (4)8' () DDP! — A(y)¢' (y) DoY) .

Consider finally the term £,Q3 in (A.1), we find using (A.2) and (A.5)

1 1% v 1
L2Q5 = §(f(y)2 — 5% %%(?J)szmpg - E%(?J)szﬁg - §¢(y)D2D2P15
1
—§¢(y)D2 (U3D3P(§5 + 02D2P65) ;
with o P 5
Dy=2_ 32 4209

dz3 " 0x? Ox
and v, 3 defined in (3.9).
To summarize, the source term is given by

G = ¢ {1/ DDD2P6 -V Pf( )%(y)pz)ng
—v pA( )%( )DD2P65+V2A( )45(y)DaPy
_% (pf (y)¢'(y)DD2P) — A(y)¢'(y) DoY)

— () =) 6(0)D:D:P})
+¢%/2 {%(f(y)2 — %) [%wl (y)DosDD, P — %%(?J)DQDQPS - %QS(?/)D?D?Pf

1
—§¢(y)D2(’U3D3Pg =+ UQDQP(;S)}

By inspection, this can be written in the form (5.5).
From (5.3) and (A.5) we can also see that the terminal condition H® in (5.5) can
be written in the form (5.6).

B Proof of Lemma 5

To prove Lemma 5 notice first that a calculation based on the analytic expression for
the Black-Scholes price in the standard constant volatility case gives

e*N(u/T + br) forn=1
e*N(u/T +br) + 37 bT et i e~ (w/THT* /2 for p > 9

for some constants b; and with

QﬁPg(s, x) = {

= oVT+d—s
= z—log(K)

o>~ &
|

(r/5*+1/2).
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Assume first that T — s > (T'—¢)/2 > 0, then 0 < my/(T —1)/2 < 7 <
moV/T + 8 —t and 0 < b < (r/m? +1/2). Since 9. P{(s,z) is bounded it follows that

B g {X(Y)OLPE (5, X0 | (B.2)
= By { XV B 0y {OLPI (3, X5) | Zit <0 <5} )|
< OBy {0V}

for some constant ¢ which may depend on .
Consider next the case ' — s < (T'—t)/2 > 0, then

N

1 ; 2 N
|E*t,z,y {_euaze—(u/rﬂw) /2 | ZXt<wv < s} | (B.3)
T

1 ; 2
— ;|/euaze—(u/7+br) /2p(u)du|

1 .
= —Z.|/eT“8Ze_(”+bT)2/2p(Tu)du\ < £
n

7—Z

where p is the conditional distribution of u = X¢ — log(K), which is the Gaussian
distribution with variance at least (T —t)(1 — p?)m?/2. Lemma 5 follows readily from
(B.2) and (B.3).

C On the solution of the Poisson equation
Let x solve
Lox+g = 0,

with Lo defined as in (2.4) and with g satisfying the centering condition

where the averaging is done with respect to the invariant distribution associated to
the infinitesimal generator £y (see (3.3) for an explicit formula). Using the explicit
form of the differential operator Ly, one can easily deduce that

X () = — ' 9(2)®(2) dz = — )

V2

9(2)®(2) dz

2
V= Jy

with @ being the probability density of the invariant distribution N (m, v2) associated
with L£y. From this it follows that if g is bounded

X (W) < «a
X)) < el +Tlog(1l+ |y])).

We refer to [1](5.2.2) for details. Notice that x in Lemma 4 satisfies
x| < cmax(|o(y)], [¢ W), [¥12)], [12(y)])
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for some constant ¢ and with ¢ and 1), 5 defined in (3.10) and (A.4) respectively. These
functions are solutions of Poisson equations with g = f? — (f?) or g = f¢' — (f¢') or
g = A¢' —(A¢') which are bounded. Therefore x(y) is at most logarithmically growing
at infinity. The bound in Lemma 4 now follows from classical a priori estimates on
the moments of the process Y,” which are uniform in ¢ as can easily be seen by a
simple time change ¢t = et’ in (2.2).
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